Vertretungsstunde Mathematik * Klasse 7c * 11.10.2013

1. Finde die folgenden Terme und ergänze die Tabelle! (T₃ ist schwer! Denke an die Quadratzahlen!)

X	1	2	3	4	5	20	2,5
$T_1(x) =$	2	9	16	23			
$T_2(x) =$	47	44	41	38			
$T_3(x) =$	1,5	4,5	9,5	16,5	25,5		

2. Ergänze die Wertetabelle

a)	X	2	-5	10	-13	0.5		
	T(x) = 2(x+3)-5						11	-1

b) 14 -7 5 0,5 \mathbf{X} $T(x) = \frac{x+1}{3} - 1$ 2 -2

3. Gib zu den folgenden Termen die Wortform an!

a)
$$T_1(x) = 3x - 4$$
 b) $T_2(x) = \frac{2x}{x+1}$ (d.h. $T_2(x) = (2x) : (x+1)$)

4. Gib den zugehörigen Term an!

- a) Multipliziere die Summe aus dem Doppelten von x und 3 mit der Differenz aus 5 und der Hälfte von x.
- b) Subtrahiere vom Quotienten aus x und 5 das Produkt aus 5 und der Summe von x und 3.

5. Knobelaufgabe

Gesicht ist die Anzahl A(n) von Diagonalen in einem n – Eck, d.h. in einem Vieleck mit n Ecken. Diese Anzahl hängt natürlich von n ab, d.h. A lässt sich durch n ausdrücken!

3 - Eck

A(3) = 0

4 - Eck

A(4) = 2

5 - Eck

A(5) = 5

6 - Eck

n - Eck

A(6) = 9

A(n) = ?

Wie viele Diagonalen hat also ein 100 – Eck?

Vertretungsstunde Mathematik * Klasse 7c * 11.10.2013 * Lösungen

Lösungen

1.

X	1	2	3	4	5	20	2,5
$T_1(x) = \frac{7x - 5}{}$	2	9	16	23	30	135	12,5
$T_2(x) = 50 - 3x$	47	44	41	38	35	-10	42,5
$T_3(x) = x^2 + 0.5$	1,5	4,5	9,5	16,5	25,5	400,5	6,75

2. Ergänze die Wertetabelle

a)	Х	2	-5	10	-13	0,5	5	-1
	T(x) = 2(x+3)-5	5	-9	21	-25	2	11	-1

3. a) $T_1(x) = 3x - 4$ "Subtrahiere vom Dreifachen von x die Zahl 4." oder "Subtrahiere vom Produkt aus 3 und x die Zahl 4." oder ...

b)
$$T_2(x) = \frac{2x}{x+1}$$
 (d.h. $T_2(x) = (2x) : (x+1)$)

"Dividiere das Doppelte von x durch die Summe von x und 1." oder "Bilde den Quotienten aus dem Doppelten von x und der Summe von x und 1."

4. a) Multipliziere die Summe aus dem Doppelten von x und 3 mit der Differenz aus 5 und der Hälfte von x.

$$T(x) = (2x+3)\cdot(5-\frac{x}{2})$$
 oder $T(x) = (2x+3)\cdot(5-0,5x)$ oder $T(x) = (2x+3)\cdot(5-x:2)$

b) Subtrahiere vom Quotienten aus x und 5 das Produkt aus 5 und der Summe von x und 3.

$$T(x) = \frac{x}{5} - 5 \cdot (x+3)$$

5. $A(n) = \frac{n \cdot (n-3)}{2}$, denn von jeder der n Ecken gehen n-3 Diagonalen aus

(keine Diagonale zu den beiden benachbarten Ecken und zur Ecke selbst!), und jede dieser Diagonalen kann von den beiden Endpunkten gezeichnet werden, daher muss man $\mathbf{n} \cdot (\mathbf{n} - 3)$ noch durch 2 teilen.

Ein Hundert-Eck hat also $A(100) = \frac{100 \cdot (100 - 3)}{2} = \frac{9700}{2} = 4850$ Diagonalen.