## Q11 \* Mathematik \* Aufgaben zur natürlichen Exponentialfunktion

- 1. Gegeben sind die Funktionen f und g mit  $f(x) = 1 + e^{1-x}$  und  $g(x) = 2 \cdot e^{x-1}$ .
  - a) Skizzieren Sie die beiden Graphen.
  - b) Bestimmen Sie den Schnittpunkt der beiden Graphen.
  - c) Unter welchem Winkel schneiden sich die beiden Graphen?
- 2. Gegeben sind die folgenden Funktionen mit

$$f(x) = e^x$$
;  $g(x) = 0.5 \cdot e^x$ ;  $h(x) = 0.5 \cdot e^{x-2}$ ;  $k(x) = 0.5 \cdot e^{-x-2}$ ;  $p(x) = -0.5 \cdot e^{-x-2}$ .

Zeichnen Sie die Graphen dieser Funktionen in ein Koordinatensystem.

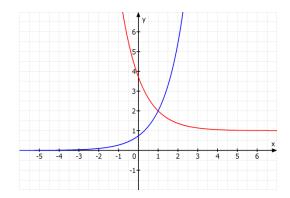
Welche Beziehung besteht zwischen den Graphen?

- 3. Gegeben ist die Funktion f mit  $f(x) = x \cdot e^{1-x}$ .
  - a) In welchen Intervallen ist f streng monoton wachsend?
  - b) Bestimmen Sie alle Hoch- und Tiefpunkte des Graphen von f.
  - c) Skizzieren Sie den Graphen von f.
- 4. Gegeben ist die Funktion f mit  $f(x) = (x^2 + x 5) \cdot e^x$ . Bestimmen Sie alle Hoch- und Tiefpunkte des Graphen von f.



## Q11 \* Mathematik \* Aufgaben zur natürlichen Exponentialfunktion \* Lösungen

1. a)

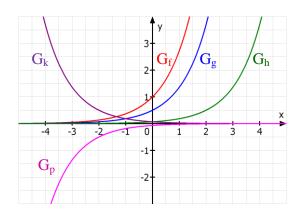


- b) Schnittpunkt S(1/2)
- c) Schnittwinkel  $\varphi$   $f'(x) = -e^{1-x} \; ; \; g'(x) = 2 \cdot e^{x-1} \; ;$   $m_1 = f'(1) = -1 \; ; \; m_2 = g'(1) = 2 \; ;$

$$\tan \varphi = \left| \frac{\mathbf{m}_1 - \mathbf{m}_2}{1 + \mathbf{m}_1 \cdot \mathbf{m}_2} \right| = 3 \implies$$

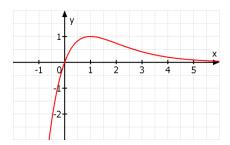
$$\varphi \approx 71,6^{\circ}$$

2.  $G_g$  um 2 nach rechts verschoben  $\rightarrow G_h$   $G_h$  an y-Achse gespiegelt  $\rightarrow G_k$  $G_k$  an x-Achse gespiegelt  $\rightarrow G_p$ 

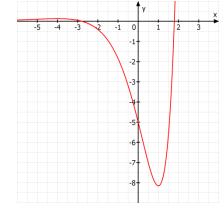


- 3. a) f ist streng monoton wachsend in  $]-\infty$ ; 1], denn  $f'(x) = (1-x) \cdot e^{1-x}$ 
  - b) HOP (1/1)





4.

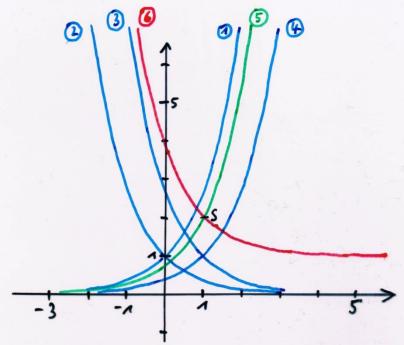


$$HOP(-4/\frac{7}{e^4}) \approx (-4/0.13)$$
 und

$$TIP(1/-3e) \approx (1/-8,15)$$
, denn

$$f'(x) = (x^2 + 3x - 4) \cdot e^x = (x+4) \cdot (x-1) \cdot e^x$$





(=) 
$$(e^{x})^{L} - \frac{e}{L} \cdot e^{x} - \frac{e^{L}}{L} = 0$$
 Subst.  $u = e^{x}$ 

(=) 
$$u^{2} - \frac{e^{2}}{2}u - \frac{e^{2}}{2} = 0$$
 (=)  $u_{AIL} = \frac{\pi}{2} \left( \frac{e}{2} + \sqrt{\frac{e^{2}}{4} + \lambda e^{2}} \right)$