Q11 * Mathematik * Wichtige Lerninhalte für die 1. Klausur

- Gebrochen rationale Funktionen, insbesondere
 - Verhalten an den Definitionslücken und im Unendlichen
 - Asymptoten, auch schräg liegende
 - Polynomdivision
- Der Differentialquotient und seine geometrische Bedeutung
- Berechnung des Differentialquotienten
- Anwendungen des Differentialquotienten wie z.B.
 - Tangenten- und Normalengleichung
 - Schnittwinkel von Graphen
- Die Ableitungsfunktion (auch ihre graphische Ermittlung)
- Summen-, Produkt- und Kettenregel
- Anwendung der Ableitung, insnbesondere
 - Ermitteln von Hoch-, Tief- und Terrassenpunkten
 - Einfache "Kurvendiskussion" bei gebrochen rationalen Funktionen

Typische Aufgaben

1. Bestimme alle Asymptoten (senkrechte, waagrechte bzw. schräg liegende) der Funktion

$$f(x) = \frac{x^3 - 2x^2 + 1}{3x - x^2}$$

- 2. Berechnen Sie die Steigung des Graphen von f an der Stelle $x_1 = 2$ bzw. an einer beliebigen Stelle $\,x_o\,$ mit Hilfe des Differentialquotienten für $\,f(x)=2\cdot x^2-3\,$.
- 3. Unter welchem Winkel schneidet der Graph der Funktion f die x-bzw. y-Achse?

a)
$$f(x) = -0.5x^2 + 2x - 2$$

$$f(x) = -0.5x^2 + 2x - 2$$
 b) $f(x) = \frac{x^2 - 9}{3x + 1}$

4. Bestimmen Sie alle Hoch-, Tief- bzw. Terrassenpunkte des Graphen von f.

$$f(x) = \frac{1}{12} \cdot (3x^4 + 4x^3 - 12x^2)$$

5. Führen Sie für die gebrochen rationale Funktion f mit $f(x) = \frac{x^2 - 3x}{2x + 2}$ eine

"Kurvendiskussion" durch, d.h.

bestimmen Sie den Definitionsbereich Df, alle Nullstellen, das Verhalten an den Grenzen des Definitionsbereichs, schräg liegende Asymptoten, die Ableitung und alle Hoch- und Tiefpunkte des Graphen.

Skizzieren Sie anschließend den Graphen!

Q11 * Mathematik * Lerninhalte 1. Klausur * Lösungen zu den typischen Aufgaben

1.
$$f(x) = \frac{x^3 - 2x^2 + 1}{3x - x^2} = \frac{x^3 - 2x^2 + 1}{x \cdot (3 - x)}$$
; $D_f = R \setminus \{0; 3\}$ also senkrechte Asymptoten $x = 0$ und $x = 3$

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{x^3 - 2x^2 + 1}{x \cdot (3 - x)} = \frac{1}{\pm 0 \cdot 3} = \pm \infty \; ; \; \lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to 0 \\ x \to 0}} \frac{x^3 - 2x^2 + 1}{x \cdot (3 - x)} = \frac{10}{3 \cdot \mp 0} = \mp \infty$$

$$(x^3 - 2x^2 + 1) : (-x^2 + 3x) = -x - 1 + \frac{3x + 1}{-x^2 + 3x} \implies y = -x - 1 \text{ ist Asymptote für } x \to \pm \infty$$

2.
$$f'(2) = \lim_{x \to 2} \frac{(2 \cdot x^2 - 3) - (2 \cdot 2^2 - 3)}{x - 2} = \lim_{x \to 2} \frac{2 \cdot x^2 - 8}{x - 2} = \lim_{x \to 2} \frac{2 \cdot (x - 2) \cdot (x + 2)}{x - 2} = \lim_{x \to 2} 2 \cdot (2 + x) = 2 \cdot (2 + 2) = 8$$

$$f'(x_o) = \lim_{x \to x_o} \frac{2 \cdot x^2 - 3 - (2 \cdot x_o^2 - 3)}{x - x_o} = \lim_{x \to x_o} \frac{2 \cdot x^2 - 2x_o^2}{x - x_o} = \lim_{x \to x_o} \frac{2 \cdot (x - x_o) \cdot (x + x_o)}{x - x_o} = \lim_{x \to x_o} 2 \cdot (x + x_o) = 2 \cdot (x_o + x_o) = 4x_o$$

3. a)
$$f(x) = -0.5x^2 + 2x - 2 \implies f'(x) = -x + 2$$
Nullstellen:
$$f(x) = 0 \Leftrightarrow x^2 - 4x + 4 = 0 \Leftrightarrow x_{1,2} = 2 \text{ doppelte Nullstelle}$$

$$f'(2) = -2 + 2 = 0 \text{ der Graph von f berührt die x-Achse bei } x_{1/2} = 2 \text{ (,,Schnittwinkel'' 0°)}$$

$$f'(0) = 2 \implies \text{Steigungswinkel } \alpha = \tan^{-1}(2) \approx 63.4^{\circ}$$
Schnittwinkel mit y – Achse also $90^{\circ} - 63.4^{\circ} = 26.6^{\circ}$

b)
$$f(x) = \frac{x^2 - 9}{3x + 1} \implies f'(x) = \frac{(3x + 1) \cdot 2x - (x^2 - 9) \cdot 3}{(3x + 1)^2} = \frac{3x^2 + 2x + 27}{(3x + 1)^2}$$

Nullstellen: $f(x) = 0 \iff x^2 - 9 = 0 \iff x_{1/2} = \pm 3 \text{ und } f'(3) = \frac{27 + 6 + 27}{100} = 0,6$
und $f'(-3) = \frac{27 - 6 + 27}{64} = 0,75$ und $f'(0) = \frac{0 + 0 + 27}{1} = 27$

Steigungswinkel und damit Schnittwinkel bei $x_1 = 3$: $\alpha = \tan^{-1}(0,6) \approx 31,0^{\circ}$ Steigungswinkel und damit Schnittwinkel bei $x_2 = -3$: $\alpha = \tan^{-1}(0,75) \approx 36,9^{\circ}$ Steigungswinkel bei $x_3 = 0$: $\alpha = \tan^{-1}(27) \approx 87,9^{\circ}$ also Schnittwinkel mit y-Achse 2,1°

4.
$$f(x) = \frac{1}{12} \cdot (3x^4 + 4x^3 - 12x^2) \implies f'(x) = \frac{1}{12} \cdot (12x^3 + 12x^2 - 24x) = x \cdot (x^2 + x - 2)$$

Horizontale Tangenten:
 $f'(x) = 0 \iff x \cdot (x^2 + x - 2) = 0 \iff x \cdot (x - 1) \cdot (x + 2) = 0 \iff x_0 = 0 \; ; \; x_1 = 1 \; ; \; x_2 = -2$

$$f'(x) = 0 \Leftrightarrow x \cdot (x^2 + x - 2) = 0 \Leftrightarrow x \cdot (x - 1) \cdot (x + 2) = 0 \Leftrightarrow x_0 = 0 ; x_1 = 1 ; x_2 = -2$$

$$y_0 = f(0) = 0 ; y_1 = f(1) = \frac{1}{12} \cdot (3 + 4 - 12) = -\frac{5}{12} ; y_2 = f(-2) = \frac{48 - 32 - 48}{12} = -\frac{8}{3}$$

X	x < -2	x = -2	-2 < x < 0	x = 0	0 < x < 1	x = 1	1 < x
$f'(x) = x \cdot (x-1) \cdot (x+2)$	< 0	= 0	>0	=0	< 0	=0	>0

Tiefpunkt $(-2/-\frac{8}{3})$; Hochpunkt (0/0); Tiefpunkt $(1/-\frac{5}{12})$; kein Terrassenpunkt

5.
$$f(x) = \frac{x^2 - 3x}{2x + 2} = \frac{x \cdot (x - 3)}{2 \cdot (x + 1)}$$
; $D_f = R \setminus \{-1\}$; Nullstellen $x_1 = 0$; $x_2 = 3$; $y_1 = y_2 = 0$

Senkrechte Asymptote bei
$$x_3 = -1$$
 mit $\lim_{\stackrel{>}{x \to -1}} f(x) = \lim_{\stackrel{>}{x \to -1}} \frac{x \cdot (x-3)}{2 \cdot (x+1)} = \frac{1}{2 \cdot (\pm 0)} = \pm \infty$

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{x \cdot (x - 3)}{2 \cdot (x + 1)} = \lim_{x \to \pm \infty} \frac{(x - 3)}{2 \cdot (1 + \frac{1}{x})} = \frac{\pm \infty}{2} = \pm \infty$$

Schräg liegende Asymptote $y = \frac{1}{2}x - 2$ für $x \to \pm \infty$, denn

$$(x^2 - 3x) : (2x + 2) = \frac{1}{2}x - 2 + \frac{4}{2x + 2}$$

$$f(x) = \frac{x^2 - 3x}{2x + 2} \implies f'(x) = \frac{(2x + 2) \cdot (2x - 3) - 2 \cdot (x^2 - 3x)}{(2x + 2)^2} =$$

$$=\frac{4x^2-2x-6-2x^2+6x}{(2x+2)^2}=\frac{2x^2+4x-6}{(2x+2)^2}=\frac{2\cdot(x^2+2x-3)}{4\cdot(x+1)^2}=\frac{(x-1)\cdot(x+3)}{2\cdot(x+1)^2}$$

$$f'(x) = 0 \iff (x-1) \cdot (x+3) = 0 \iff x_4 = 1 ; x_5 = -3 \text{ und } y_4 = -\frac{1}{2} ; y_5 = -\frac{9}{2}$$

X	x < -3	x = -3	-3 < x < 1	x = 1	1 < x
$f'(x) = \frac{(x-1)\cdot(x+3)}{2\cdot(x+1)^2}$	>0	= 0	< 0	= 0	>0

Hochpunkt (-3/-4,5); Tiefpunkt (1/-0,5)

