## Q12 \* Astrophysik ph<sub>2</sub> \* Klausur am 24.03.2014

- 1. Etwa 60 70% der Sterne unserer Milchstraße sind Doppelstern- oder Mehrfachsysteme.
  - a) Man unterscheidet 4 unterschiedliche Arten von Doppelsternsystemen. Benennen Sie diese 4 unterschiedlichen Typen.
  - b) Capella im Sternbild Fuhrmann ist ein Mehrfachsternensystem. Die Komponenten Aa und Ab umrunden dabei einander in 104 Tagen in einem Abstand von 1,15·10<sup>11</sup> m.

    Bestimmen Sie aus diesen Daten die Gesamtmasse des Systems in Vielfachen der Sonnenmasse.
  - c) Die relative Linienverschiebung  $\Delta \lambda: \lambda$  der  $H_{\alpha}$ -Linie unterscheidet sich für Aa und Ab kaum. Der Wert von  $\Delta \lambda: \lambda$  für Aa beträgt etwa 93% des entsprechenden Wertes für Ab. Bestimmen Sie nun die Masse der Komponente Aa in Vielfachen der Sonnenmasse.
- 2. Altair ist der hellste Stern im Sternbild Adler. Seine scheinbare Helligkeit beträgt 0,76, die jährliche Parallaxe hat den Wert 0,195".
  - a) Bestimmen Sie die Entfernung von Altair in den Einheiten parsec und Lichtjahren.
  - b) Bestimmen Sie die absolute Helligkeit von Altair und vergleichen Sie mit dem Wert im abgebildeten HRD.
  - c) Bestimmen Sie die Leuchtkraft von Altair in Vielfachen der Sonnenleuchtkraft.
  - d) Schätzen Sie den Radius von Altair in Vielfachen des Sonnenradius  $R_{\odot}$  ab. Welchen Wert müssen Sie zu diesem Zweck dem abgebildeten HRD entnehmen?
  - e) Schätzen Sie die Masse von Altair in Vielfachen der Sonnenmasse ab. Welche Information müssen
  - Sie dafür dem abgebildeten HRD entnehmen?

    f) Schätzen Sie ab, wie lange Altair ein Hauptreihenstern bleibt.

    Welche nächste Entwicklungsstufe hat Altair dann zu erwarten?

| -       | 40,000°C 30 | ,000°C 10,0                             |             | LAR TEMPERA<br>0°C 600    |                      | 0°C 350                    | 0°C 2400°I                |
|---------|-------------|-----------------------------------------|-------------|---------------------------|----------------------|----------------------------|---------------------------|
| 8       |             |                                         | SUPERGIA    | NTS – la                  |                      |                            |                           |
| 6       | Naos •      | Saiph Rigel<br>Aludra                   | Deneb       | •                         | Wezen                | 0                          | Beteigeuse                |
| 4       | Mimosa      | • Adhara                                | Canopus S   | UPERGIANTS - P<br>Mirfak* | lb<br>olaris         | Enif Suhail                | Antares                   |
| 2       | Spica       | Achernar                                | BRI         | GHT GIANTS                | - II                 | Almach                     | Gacrux                    |
| 0       |             | Regulus.                                |             |                           | Poll<br>Capella •    | ux<br>Dubhe Aldeb<br>Kocab | aran Mira                 |
| 2       |             | Vega                                    |             | GIANTS - III              |                      | Arcturus<br>SUBGIANTS –    |                           |
| 4       | MAGNITUDE   | Fomal                                   | haut Altair | Procyon A                 |                      |                            | 0                         |
| 6       |             | *************************************** |             | SEQUENCE                  | Rigil Kent<br>Sun    | α Centauri B               | - I                       |
| В       | ABSOLUTE    |                                         |             |                           | ε Eridani—           | 61 Cygni A                 |                           |
| 0       |             | -                                       |             |                           |                      | 61 Cygni B                 |                           |
| 2       |             | 1000                                    | Sirius B    |                           |                      | Kapteyn's<br>star          |                           |
| 4       |             | WHI                                     | TE DWARES   | Procyon B                 |                      |                            | Barnard's s               |
| 16      |             |                                         |             |                           | Van Maanen's<br>star | Proxin                     | Ros<br>128<br>na Centauri |
| ( ) and | 0 5         | 0 5<br>B                                | 0 5<br>A    | 0 5<br>F<br>RECTRAL CLA   | 0 5<br>G             | 0 5<br>K                   | 0 5<br>M                  |

Längeneinheiten:  $1,00 \text{ pc} = 3,26\text{Lj} = 3,09 \cdot 10^{16} \text{ m}$ 

Gravitationskonstante:  $G = 6,67 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}$ 

Daten der Sonne: absolute Helligkeit  $M_{\odot} = 4.8$  Masse  $m_{\odot} = 2.0 \cdot 10^{30}$  kg

Oberflächentemperatur  $T_{\odot} = 5800 \text{ K}$ 

| Aufgabe | 1a | b | c | 2a | b | c | d | e | f | Summe |
|---------|----|---|---|----|---|---|---|---|---|-------|
| Punkte  | 4  | 4 | 4 | 2  | 3 | 3 | 4 | 3 | 4 | 31    |



## Q12 \* Astrophysik ph<sub>2</sub> \* Klausur am 24.03.2014 \* Lösung

1. a) Man unterscheidet visuelle, astrometrische, photometrische und spektroskopische Doppelsterne.

b) 
$$\omega^2 = G \cdot \frac{m_{Aa} + m_{Ab}}{d^3} \Rightarrow m_{Aa} + m_{Ab} = \frac{\omega^2 \cdot d^3}{G} = \frac{4 \cdot \pi^2 \cdot d^3}{T^2 \cdot G} = \frac{4 \cdot \pi^2 \cdot (1,15 \cdot 10^{11})^3}{(104 \cdot 24 \cdot 3600s)^2 \cdot 6,67 \cdot 10^{-11} m^3 / (kg \cdot s^2)} = 11,148... \cdot 10^{30} kg = \frac{11,148...}{2,0} \cdot m_{\odot} = 5,6 m_{\odot}$$
c)  $\frac{\Delta \lambda}{\lambda} = \frac{v}{c}$  und  $\frac{v_{Aa}}{v_{Ab}} = \frac{r_{Aa}}{r_{Ab}} = \frac{m_{Ab}}{m_{Aa}} \Rightarrow 0,93 = \left(\frac{\Delta \lambda}{\lambda}\right)_{Aa} : \left(\frac{\Delta \lambda}{\lambda}\right)_{Ab} = \frac{m_{Ab}}{m_{Aa}} \Rightarrow m_{Ab} = 0,93 \cdot m_{Aa} \Rightarrow m_{Ab} = 0,93 \cdot m_$ 

2. a) 
$$r = \frac{1^{\prime\prime}}{p} \cdot pc = \frac{1^{\prime\prime}}{0.195^{\prime\prime}} \cdot pc = 5.13pc = 16.7Lj$$

b) 
$$m - M = 5 \cdot lg \frac{r}{10pc} \implies M = m - 5 \cdot lg \frac{5,13pc}{10pc} = 0,76 - (-1,45) = 2,21 \text{ (passt zum HRD)}$$

c) 
$$M_A - M_\odot = -2.5 \cdot lg \frac{L_A}{L_\odot} \implies = \frac{L_A}{L_\odot} = 10^{\frac{M_A - M_\odot}{-2.5}} = 10^{\frac{4.8 - 2.21}{2.5}} = 10.86... \implies L_A = 11L_\odot$$

d) Die Oberflächentemperatur von Altair ist dem HRD zu entnehmen.  $T_A \approx 8000 K$  und

$$L = \sigma \cdot A \cdot T^4 = \sigma \cdot 4\pi R^2 \cdot T^4 \implies \frac{R_A^2 T_A^4}{L_A} = \frac{R_\odot^2 T_\odot^4}{L_\odot} \implies$$

$$R_A = R_\odot \cdot \sqrt{\frac{L_A}{L_\odot}} \frac{T_\odot^2}{T_A^2} = \sqrt{11} \cdot \frac{5800^2}{8000^2} \cdot R_\odot \approx 1,7 R_\odot$$

e) Altair ist ein Hauptreihenstern. Es gilt damit die Masse-Leuchtkraft-Beziehung  $\,L\sim m^3\,.$ 

Also 
$$\frac{L_A}{L_\odot} = \frac{m_A^3}{m_\odot^3} \implies m_A = \sqrt[3]{\frac{L_A}{L_\odot}} \cdot m_\odot = \sqrt[3]{11} \cdot m_\odot \approx 2, 2 \cdot m_\odot$$

f) Die "Lebenserwartung"  $\tau$  auf der Hauptreihe ist proportional zur Masse m ("Brennmaterial") und umgekehrt proportional zur Strahlungsleistung, d.h. Leuchtkraft L. Daher gilt

$$\tau \sim \frac{m}{L} \sim \frac{m}{m^3} = \frac{1}{m^2}$$
 und wegen  $\tau_{\odot} \approx 10 \cdot 10^9 a$  folgt daher

$$\frac{\tau_{A}}{\tau_{\odot}} = \frac{m_{\odot}^{2}}{m_{A}^{2}} \implies \tau_{A} = \frac{m_{\odot}^{2}}{m_{A}^{2}} \cdot \tau_{\odot} = \frac{1}{2, 2^{2}} \cdot 10 \cdot 10^{9} a \approx 2 \cdot 10^{9} a$$

Altair wird zum "Roten Riesen" werden.

