Mathematik * Jahrgangsstufe 11 * Aufgaben zu Kurvenscharen

Führen Sie jeweils die Diskussion der Kurvenschar durch und skizzieren Sie "typische Graphen" der Schar. Bestimmen Sie gegebenenfalls die Kurven, auf denen Hoch-, Tief- oder Wendepunkte der Schar liegen.

Prüfen Sie zum Schluss Ihre Ergebnisse mit geeigneter Software.

1.
$$f_k(x) = x^2 - kx + 1$$
 $k \in R$

$$k \in R$$

$$2. f_k(x) = x^2 + kx$$

$$k \in R^+$$

3.
$$f_k(x) = k x^2 - \frac{1}{k} x$$

$$k \in \mathbb{R}^+$$

4.
$$f_k(x) = kx^2 + (k+1)x$$
 $k \in \mathbb{R}^+$

$$k \in R^+$$

5.
$$f_k(x) = x^3 + kx^2$$

$$k \in R$$

6.
$$f_k(x) = x^3 + k x^2 + x$$
 $k \in R_o^+$

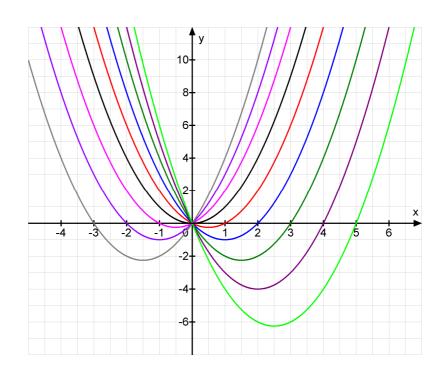
$$k \in R_{o}^{+}$$

$$7. f_k(x) = \frac{kx}{k+x^2}$$

$$k \in R^+$$

8.
$$f_k(x) = \frac{10x(2k-x)}{1+k^3}$$

 $k \in R^+$



Aufgaben zu Kurvenscharen * Lösungen

1. Für k=2 doppelte Nullstelle bei x=1; für k=-2 doppelte Nullstelle bei x=-1 für k>2 bzw. k<-2 zwei Nullstellen bei $x_{1/2}=0,5\cdot(k\pm\sqrt{k^2-4})$

Tiefpunkt: $TIP(\frac{k}{2}/1-\frac{k^2}{4})$; Kurve der Tiefpunkte: $y=1-x^2$ mit $x \in R$

2. Nullstellen: $x_1 = -k$; $x_2 = 0$

Tiefpunkt: $TIP(-\frac{k}{2}/-\frac{k^2}{4})$; Kurve der Tiefpunkte: $y=-x^2$ mit $x \in R^-$

3. Nullstellen: $x_1 = 0$; $x_2 = \frac{1}{k^2}$

Tiefpunkt: $TIP(\frac{1}{4k^2}/-\frac{3}{16k^3})$; Kurve der Tiefpunkte: $y = -1, 5 \cdot x \cdot \sqrt{x}$ mit $x \in R^+$

4. Nullstellen: $x_1 = 0$; $x_2 = -1 - \frac{1}{k}$ Tiefpunkt: $TIP(-\frac{k+1}{2k} / -\frac{(k+1)^2}{4k})$

Kurve der Tiefpunkte: $y = \frac{x^2}{1+2x}$ mit $x \in]-\infty; -\frac{1}{2}[$

5. Nullstellen: $x_{1/2} = 0$; $x_3 = -k$ für k = 0 Terrassenpunkt TP(0/0)

für k > 0: TIP(0/0); $HOP(-\frac{2k}{3}/\frac{4k^3}{27})$ Kurve der HOP: $y = -\frac{1}{2}x^3$ mit $x \in R^-$

für k < 0 : $TIP(-\frac{2k}{3}/\frac{4k^3}{27})$; HOP(0/0) Kurve der TIP: $y = -\frac{1}{2}x^3$ mit $x \in R^+$

für alle k : Wendepunkt $WP(-\frac{k}{3} / \frac{2k^3}{27})$ Kurve der WP: $y = -2x^3$ mit $x \in R$

6. für $0 \le k < 2$ gibt es genau eine NSt. $x_1 = 0$; für k = 2 gibt es zwei NSt. $x_1 = 0$; $x_2 = -1$

für k > 2 gibt es drei NSt. $x_1 = 0$; $x_{2/3} = \frac{1}{2}(-k \pm \sqrt{k^2 - 4})$

für $k > \sqrt{3}$ gibt es $HOP(\frac{1}{3}(-k - \sqrt{k^2 - 3} / ...))$ und $TIP(\frac{1}{3}(-k + \sqrt{k^2 - 3} / ...))$

für $k = \sqrt{3}$ gibt es Terrassenpunkt $TP(-\frac{\sqrt{3}}{3}/-\frac{\sqrt{3}}{9})$

für alle $k \in R_o^+$ Wendepunkt WP $\left(-\frac{k}{3} / \frac{2k^3}{27} - \frac{k}{3}\right)$ Kurve der WP: $y = -2x^3 + x$ mit $x \in R_o^-$

7. Nullstellen: $x_1 = 0$

Hochpunkte: $HOP(\sqrt{k} / \frac{\sqrt{k}}{2})$; Kurve der Hochpunkte: $y = \frac{1}{2}x$ mit $x \in R^+$

Tiefpunkte: $TIP(-\sqrt{k}/-\frac{\sqrt{k}}{2})$; Kurve der Hochpunkte: $y = \frac{1}{2}x$ mit $x \in R^-$

8. Nullstellen: $x_1 = 0$; $x_2 = 2k$

Hochpunkt: $HOP(k / \frac{10k^2}{1+k^3})$; Kurve der Hochpunkte: $y = \frac{10x^2}{1+x^3}$ mit $x \in R^+$