Typische Aufgaben zu reellen Funktionen * Jahrgangsstufe 11

1. Bestimmen Sie den maximalen Definitionsbereich und alle Nullstellen!

a)
$$f(x) = \frac{2x+1}{x^2-x}$$

a)
$$f(x) = \frac{2x+1}{x^2-x}$$
 b) $g(x) = -\sqrt{-x^2+9}$ c) $h(x) = \sqrt{\frac{2x+6}{3x}}$

c)
$$h(x) = \sqrt{\frac{2x+6}{3x}}$$

d)
$$k(x) = \frac{3x^2 - 5x + 4}{-2x^2 + x + 1}$$

d)
$$k(x) = \frac{3x^2 - 5x + 4}{-2x^2 + x + 1}$$
 e) $l(x) = \frac{2x^7 - 4x^5}{\sqrt{x^2 + 3} - 1}$ f) $m(x) = \sqrt{\frac{3x}{\sqrt{x - 12}}}$

f)
$$m(x) = \sqrt{\frac{3x}{\sqrt{x-12}}}$$

2. Prüfen Sie auf Symmetrie!

a)
$$f(x) = x^8 - 3x^6 + 5$$
 b) $g(x) = 5x^5 + 2x^3 - x$

b)
$$g(x) = 5x^5 + 2x^3 - x$$

c)
$$h(x) = \frac{x}{x^4 + x^2}$$

d)
$$k(x) = (x-3)^2 + 5$$

3. In welchen Intervallen ist die Funktion monoton?

a)
$$f(x) = -2x^2 + 4x + 3$$
 b) $g(x) = \sqrt{x^2 - 1}$

b)
$$g(x) = \sqrt{x^2 - 1}$$

c)
$$h(x) = \frac{1}{x+1}$$

$$d) k(x) = \frac{-2}{x^2}$$

4. In welchen Definitionsbereichen ist die Funktion umkehrbar? Bestimmen Sie jeweils die Umkehrfunktion und geben Sie deren Definitionsbereich an!

a)
$$f(x) = -2x^2 + 1$$

b)
$$g(x) = -\sqrt{2x+3}$$

Typische Aufgaben zu reellen Funktionen * Jahrgangsstufe 11

Lösungen:

1 a)
$$D_f = R \setminus \{0; 1\}$$
 NSt.: $x_1 = -0.5$

b)
$$D_g = [-3; 3]$$
 NSt.: $x_{1/2} = \pm 3$

c)
$$D_h = R \setminus [-3; 0]$$
 NSt.: $x_1 = -3$

d)
$$D_k = R \setminus \{-\frac{1}{2}; 1\}$$
 keine NSt.

f)
$$D_m = 12$$
; ∞ [keine NSt.

- 2 a) Achsensymmetrie zur y-Achse b) Punktsymmetrie zum Ursprung
 - c) Punktsymmetrie zum Ursprung d) Achsensymmetrie zu x = 3
- 3 a) $\;$ f ist in [1 ; ∞ [streng monoton fallend und in] ∞ ; 1] streng monoton steigend.
 - b) fist in [1; ∞ [streng monoton steigend und in] ∞ ; 1] streng monoton fallend.
 - c) h ist streng monoton fallend sowohl in] ∞ ; -1] wie auch in [-1; ∞ [.
 - d) k ist streng monoton fallend in R⁻ und streng monoton steigend in R⁺.
- - b) g ist umkehrbar in $D_g = [-1,5; \infty [$ mit $g^{-1}(x) = \frac{x^2}{2} 1,5$ und $D_{g^{-1}} = R_0^-$.